Publications

Bibliometric data

o Books: 5
o Books editor: 1
o Book chapters: 5
o IF journal papers: 106
o Other peer reviewed journal papers: 106
o Conference proceedings: 95
o Citations without self-citations (WoS): 1010
o Hirsch’a index (WoS): 21

          

Books

1. Burczynski T., Pietrzyk M., Kus W., Madej L., Mrozek A., Rauch L., Multiscale Modelling and Optimisation of Materials and Structures, Wiley, 2022.
2. Madej L., Wykorzystanie modeli wirtualnych mikrostruktur w inżynierii metali, AGH University Press, 2017 (in polish).
3. Pietrzyk M., Madej L., Rauch L., Szeliga D., Computational Materials Engineering: achieving high accuracy and efficiency in metals processing simulations, ButterworthHeinemann Elsevier, 2015.
4. Madej L., Development of the modeling strategy for the strain localization simulation based on the Digital Material Representation. AGH University Press, 2010.
5. Banet E., Baster B., Duda J., Gaweł B., Jankowski R., Jędrusik S., Macioł P., Macioł A., Madej L, Nowak J., Paliński A., Paradowska W., Pilch A., Puka R., Rębiasz B., Stawowy A., Śliwa Z., Wrona R., Zarządzanie regułami biznesowymi: perspektywy zastosowania w zarządzaniu technologią, pod red. Andrzeja Macioła i Adama Stawowego, Akademia Górniczo-Hutnicza im. Stanisława Staszica, 2011.

Books editor

1. Material Forming ESAFORM 2023, eds. Madej L., Sitko M., Perzynski K., Materials Research Proceedings, 2023.

            

          

Book chapters

1. Madej L., Hodgson P.D., Pietrzyk M., Multi scale analysis of material behavior during deformation processes, in: Foundation of Materials Design, eds., Krzysztof J. Kurzydlowski, Boguslaw Major and Pawel Zieba, Research Signpost, Kerala, 2006, 17- 47.
2. Pietrzyk M., Madej L., Szeliga D., Kuziak R., Pidvysotskyy V., Paul H., Wajda W., Rheological models of metallic materials, Metalurgia 2006, 325-364.
3. Grosman F., Madej L., Ziółkiewicz S., Nowak J., The new incremental forming process, Metalurgia 2010, 223 – 241.
4. Madej L., Sitko M., Parallelization of the Monte Carlo static recrystallization model, Lecture Notes in Computer Science, 2014, 8500, 445–458.
5. Madej L., Sieradzki L., Sitko M., Perzynski K., Radwański K., Kuziak R., Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure, in Multiscale Materials Modelling – aproaches to full multiscaling, eds. Siegfried Schamuder, Immanuel Schafer, De Gruyter, 2016.

Impact factor publications (thomson scientific)

  1. Gawad J., Kuziak R., Madej Ł., Szeliga D., Pietrzyk M., Identification of rheological parameters on the basis of various types of compression and tension tests, Steel Research International, no. 2/3, 2005, 131-137.
  2. Madej Ł, Talamantes-Silva J., Howard I.C., Pietrzyk M., Modeling of the initiation and propagation of the shear band using the coupled CAFE model, Archives of Metallurgy and Materials, 2005, 563-573.
  3. Madej Ł., Hodgson P.D., Pietrzyk M., Multi scale rheological model for discontinuous phenomena in materials under deformation conditions, Computational Material Science, 38, 685-691 2007.
  4. Pietrzyk M., Madej L., Kuziak R., Multi scale CAFE simulation of the multi step cold forging operations, Steel Research International, 78, 2007, 771-776.
  5. Madej L., Hodgson P.D., Pietrzyk M., The validation of a multi scale rheological model of discontinuous phenomena during metal rolling, Computational Materials Science, 41, 2007, 236-241.
  6. Pietrzyk M., Madej L., Weglarczyk S., Tool for Optimal Design of Manufacturing Chain Based on Metal Forming, The CIRP Annals, 2008, 57/1, 309-312.
  7. Rauch L, Madej L, Weglarczyk S, Pietrzyk M. System for design of the manufacturing process of connecting parts for automotive industry, Archives of Civil and Mechanical Engineering, 2008, 8, 157–165.
  8. Gawad J., Paszyński M., Matuszyk P., Madej L., Cellular automata coupled with hp-adaptive Finite Element Method applied to simulation of austenite-ferrite phase transformation with a moving interface, Steel Research International, 79, 2008, 579–586.
  9. Rauch L., Madej L., Deformation of the dual phase material on the basis of digital representation of microstructure, Steel Research International, 79, 2008, 579–586.
  10. Weglarczyk S., Madej L., Hanarz R., Bochniak W., Szyndler R., Korbel A., Validation of the numerical simulation of forging of gear-wheel in the reversible rotating die, Steel Research International, 79, 2008, 789–796.
  11. Madej L., Hodgson P.D., M. Pietrzyk, Development of the Multi-scale Analysis Model to Simulate Strain Localization Occurring During Material Processing, Archive of Computational Methods in Engineering, 16, 2009, 287 – 318.
  12. Madej L., Rauch L., Yang C., Strain distribution analysis based on the digital material representation, Archives of Metallurgy and Materials, 54, 2009, 499-507.
  13. Milenin, Grosman F., Madej L., Pawlicki J., Development and validation of the numerical model of rolling process with cyclic horizontal movement of rolls, Steel Research International, 81, 2010, 204-209.
  14. Rauch L., Madej L., Application of the automatic image processing in modelling of the deformation mechanisms based on the digital representation of microstructure, International Journal for Multiscale Computational Engineering, 8, 2010, 343-356.
  15. Pietrzyk M., Madej L., Kuziak R., Optimal design of manufacturing chain based on forging for copper alloys, with product properties being the objective function, The CIRP Annals, 59, 2010, 319–322.
  16. Madej L., Szeliga D., Sztangret L., Pietrzyk M., Validation of parameters of cellular automata finite element model dedicated to strain localization phenomena, Steel Research International, 81, 2010, 1426 – 1429.
  17. Madej L., Influence of Microstructure Features on Strain Distribution During Micro Forming on the Basis of Digital Material Representation, Steel Research International, 81, 2010, 1438 – 1441.
  18. Rauch L., Madej L., Kusiak J., Modelling of microstructure deformation based on the Digital Material Representation integrated with the Watershed image segmentation algorithm, Steel Research International, 81, 2010, 1446 – 1449.
  19. Pietrzyk M., Madej L., Rauch L., Gołąb R., Multiscale modeling of microstructure evolution during laminar cooling of hot rolled DP steels, Archives of Civil and Mechanical Engineering, 10, 2010, 57-67.
  20. Przyński K., Major Ł., Madej Ł., Pietrzyk M., Analysis of the stress concentration in the nanomultilayer coatings based on digital Representation of the structure, Archives of Metallurgy and Materials, 56, 2011, 393 – 399.
  21. Madej L. Muszka K., Perzyński K., Majta J., Pietrzyk M., Computer aided development of the levelling technology for flat products, The CIRP Annals, 2011, 291 – 294.1.603.
  22. Madej L., Rauch L., Perzyński K., Cybułka P., Digital Material Representation as an efficient tool for strain inhomogeneities analysis at the micro scale level, Archives of Civil and Mechanical Engineering, Archives of Civil and Mechanical Engineering, 2011, 661-679.
  23. Madej L., Paul H., Trebacz L., Wajda W., Pietrzyk M., Multi billet extrusion technology for manufacturing bi-layered components, CIRP Annals – Manufacturing Technology, 61, 2012, 235-238.
  24. Grosman F., Madej L., Ziółkiewicz S., Nowak J., Experimental and numerical investigation on development of new incremental forming process, Journal of Materials Processing Technology, 212, 2012, 2200–2209.
  25. Sieradzki L., Madej L., A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycrystalline materials, Computational Materials Science, 67, 2013, 156–173.
  26. Madej L., Sieradzki L., Sitko M.,Perzynski K., Radwański K., Kuziak R., Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure, Computational Materials Science, 77, 2013, 172–181.
  27. Perzyński K., Madej L., Numerical analysis of influence of the martensite volume fraction on DP steels behavior during plastic deformation, Archives of Metallurgy and Materials, 58, 2013, 211-215.
  28. Muszka K., Madej L., Majta J., The effects of deformation and microstructure inhomogeneities in the Accumulative Angular Drawing (AAD),  Materials Science and Engineering A,  574 , 2013, 68–74.
  29. Wajda W., Madej L., Paul H., Application of Crystal Plasticity Model for Simulation of Polycrystalline Aluminum Sample Behavior During Plain Strain Compression Test, Archives of Metallurgy and Materials, 58, 2013, 493-496.
  30. Perzyński K., Madej L., Numerical modeling of fracture during nanoindentation of the TiN coatings obtained with the PLD process, Bulletin of the polish academy of sciences: Technical sciences, 61, 2013, 973-978.
  31. Halder C., Madej L., Pietrzyk M., Discrete micro-scale cellular automata model for modelling phase transformation during heating of dual phase steels, Archives of Civil and Mechanical Engineering, 14, 2014, 96-103.
  32. Szyndler J., Madej L., Effect of number of grains and boundary conditions on digital material representatioin deformation under plain strain, Archives of Civil and Mechanical Engineering, 14, 2014, 360-369.
  33. Kruzel F., Madej L., Perzynski K., Banas K., Development of 3D adaptive mesh generation for multi scale applications, International Journal for Multiscale Computational Engineering, 12, 2014, 257-269.
  34. Sieniek M., Paszynski M., Madej L., Goik D., The adaptive Projection-Based Interpolation as a pre-processing tool in the Finite Element workflow for elasticity simulations of the dual phase microstructures, Steel Research International, 85, 2014, 1109-1119.
  35. Muszka K., Dziedzic D., Madej L., Majta J., Hodgson P.D., Palmiere E.J., The development of ultrafine-grained hot rolling products using advanced thermomechanical processing, Materials Science and Engineering: A, 610, 2014, 290–296.
  36. Pietrzyk M., Kusiak J., Kuziak R., Madej Ł., Szeliga D., Gołąb R., Conventional and multiscale modelling of microstructure evolution during laminar cooling of DP steel strips, Metallurgical and Materials Transactions A, 45A, 5835-5851, 2014.
  37. Madej L., Wang J., Perzynski K., Hodgson P.D., Numerical modelling of dual phase microstructure behavior under deformation conditions on the basis of digital material representation, Computational Material Science, 95, 2014, 651–662.
  38. Perzyński K., Madej L., Wang J., Kuziak R., Hodgson P.D., Numerical investigation of influence of the martensite volume fraction on DP steels fracture behavior on the basis of digital material representation model, Metallurgical and Materials Transactions A, 45, 2014, 5852-5865.
  39. Sieradzki L., Madej L., Modeling of the static recrystallization with cellular automata method and digital mate-rial representation approach, Steel Research International, Special Edition, 2012, 1139-1142.
  40. Wajda W., Madej L., Paul H., Gołąb R., Miszczyk M., Validation of texture evolution model for polycrystalline aluminum on the basis of 3D digital microstructures, Steel Research International, Special Edition, 2012, 1111-1114.
  41. Halder C., Bachniak D., Madej L., Chakraborti N., Pietrzyk M., Sensitivity analysis of the Finite Difference 2-D Cellular Automata model for phase transformation during heating, ISIJ, 55, 2015, 285–292.
  42. Halder C., Madej L., Pietrzyk M., Chakraborti N., Optimization of cellular automata model for the heating of Dual Phase steel by Genetic Algorithm and Genetic Programming, Materials and Manufacturing Processes, 30:4, 2015, 552-562,
  43. Rauch L., Madej L., Spytkowski P., Golab R., Development of the Cellular Automata Framework dedicated for metallic materials microstructure evolution models, Archives of Civil and Mechanical Engineering, 15, 2015, 48–61.
  44. Szyndler J., Madej L., Numerical analysis of the influence of number of grains, FE mesh density and friction coefficient on representativeness aspects of the polycrystalline Digital Material Representation – plane strain deformation case study, Computational Material Science, 96, 2015, 200–213.
  45. Madej L., Kuziak R., Mroczkowski M., Perzynski K., Libura W., Pietrzyk M., Development of the multi scale model of cold rolling based on physical and numerical investigation of ferritic-pearlitic steels, Archives of Civil and Mechanical Engineering, 15, 2015, 885–896.
  46. Perzyński K., Wiatr R., Madej L., Numerical model of the nanoindentation test based on the digital material representation of the Ti/TiN multilayers, Materials Science Poland, 33, 2015, 48-355
  47. Madej L., Tokunaga T., Matsuura K., Ohno M., Pietrzyk M., Physical and numerical modelling of backward extrusion of Mg alloy with Al coating, Annals of the CIRP, 64, 2015, 253–256.
  48. Perzynski K., Madej L., Fracture modelling in dual phase steel grades based on the discrete/continuum random cellular automata finite element RCAFE approach, Simulation, 92, 2016, 195-207.
  49. Chandan H. Sitko M., Madej L., Pietrzyk M., Chakraborti N., Optimized recrystallization model using multi-objective evolutionary and genetic algorithms and k-optimality approach, Materials Science and Technology, 32:4, 2016, 366-374
  50. Muszka K., Madej L., Wyne B., Application of the Digital Material Representation to strain localization prediction in the two phase titanium alloys, Archives of Civil and Mechanical Engineering, 16, 2016, 224–234.
  51. Szyndler J., Grosman F., Tkocz M., Madej L., Numerical and experimental investigation of the innovatory incremental forming process dedicated for the elaerospace industry, Metallurgical and Material Transactions A, 11, 2016, 5522-5533.
  52. Sitko M., Pietrzyk M., Madej L., Time and length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method, Journal of Computational Science, 16, 98-113.
  53. Madej L., Sitko M., Pietrzyk M., Perceptive comparison of mean and full field dynamic recrystallization models, Archives of Civil and Mechanical Engineering, 16, 2016, 569–589.
  54. Madej L., Sitko M., Radwanski K., Kuziak R., Validation and predictions of coupled finite element and cellular automata model: influence of the degree of deformation on static recrystallization kinetics case study, Materials Chemistry and Physics, 179, 2016, 282–294.
  55. Majta J., Madej L., Svyetlichnyy D., Muszka K., Perzynski K., Kwiecień M., Modeling of the inhomogeneity of grain refinement during combined metal forming process by finite element and cellular automata methods, Materials Science & Engineering A671, 2016, 204–213.
  56. Majta J., Perzynski K., Muszka K., Graca P., Madej L., Modeling of grain refinement and mechanical response of microalloyed steel wires severely deformed by combined forming process, International Journal of Advanced Manufacturing Technology, 89, 2017, 1559–1574.
  57. Perzynski K., Madej L., Complex hybrid numerical model in application to failure modelling in multiphase materials, Archives of Computational Methods in Engineering, 24, 2017, 869–890.
  58. Madej L., Mabrozinski M., Kwiecień M., Gronostajski Z., Pietrzyk M., Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications, International Journal of Materials Research, 108, 2017, 3-11.
  59. Perzyński K., Wrożyna A., Kuziak R., Legwand A., Madej L. Development and validation of multi scale failure model for dual phase steels, Finite Elements in Analysis and Design, 124, 2017, 7–21.
  60. Madej L., Mojżeszo M., Chraponski J., Roskosz S., Cwajna J., Digital material representation model of porous microstructure based on 3D reconstruction algorithm, Archives of Metallurgy and Materials, 62, 2017, 563-569.
  61. Madej L., Digital/virtual microstructures in application to metals engineering – A review, Archives of Civil and Mechanical Engineering, 17, 2017, 839–854.
  62. Pietrzyk M., Madej L., Perceptive review of ferrous micro/macro material models for thermo-mechanical processing applications, Steel Research International, 88, 2017, 1700193.
  63. Perzynski K., Ososkov Y., Jain M., Wilkinson D.S., Jiangting W., Madej L., Validation of the dual phase steel failure model at the micro scale, International Journal for Multiscale Computational Engineering, 15(5), 2017, 443–458.
  64. Madej L., Sitko M., Legwand A., Perzynski K., Michalik K., Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization, Journal of Computational Science 26, 2018, 66–77.
  65. Madej L., Legwand A., Mojzeszko M., Chraponski J., Roskosz S., Cwajna J., Experimental and numerical two- and three-dimensional investigation of porosity morphology of the sintered metallic material, Archives of Civil and Mechanical Engineering, 18, 2018, 1520-1534.
  66. Madej L., Perzynski K., Skladzien M., Tkocz M., Rosiak M., Grosman F., Application of the GTN model to numerical simulation of Distaloy AB sinters behaviour under complex loading conditions, Archives of Metallurgy and Materials, 63, 2018, 1937-1942.
  67. Plumeri J.E., Madej L., Misiolek W.Z., Constitutive modeling and inverse analysis of the flow stress evolution during high temperature compression of a new ZE20 magnesium alloy for extrusion applications, Materials Science & Engineering A 740–741 (2019) 174–181.
  68. Perzynski K., Cios G., Szwachta G., Zych D., Setty M., Bala B., Madej L., Numerical modelling of a compression test based on the 3D Digital Material Representation of pulsed laser deposited TiN thin films, Thin Solid Films, 673, 2019, 34-43.
  69. Perzynski K., Wang J., Radwanski K., Muszka K., Madej L., Identification of critical strains for the random cellular automata finite element failure model based on in-situ tensile test, Mechanics of Materials, 133, 2019, 154-164.
  70. Gronostajski Z., Pater Z.,  Madej L.,  Gontarz A.,  Lisiecki L.,  Łukaszek-Sołek A.,  Łuksza J.,  Mróz S.,  Muskalski Z.,  Muzykiewicz W.,  Pietrzyk M.,  Śliwa R.E.,  Tomczak J.,  Wiewiórowska S.,  Winiarski G.,  Zasadziński J.,  Ziółkiewicz S., Recent development trends in metal forming, Archives of Civil and Mechanical Engineering, 19, 2019, 898-941.
  71. Volk W., Groche P., Brosius A., Ghiotti A., Kinsey B.L., Liewald M., Madej L., Min J., Yanagimoto J., Models and modelling for process limits in metal forming, CIRP Annals Manufacturing Technology, 68, 2019, 775-798.
  72. Kupke A., Madej L., Hodgson P.D., Weiss M., Experimental in-situ verification of the unloading mechanics of dual phase steels, Materials Science & Engineering A 760, 2019, 134–140.
  73. Kawałko J., Muszka K., Graca P., Kwiecień M., Szymula M., Marciszko M., Bała P., Madej L., Beyerlein I.J., The effect of strain path changes on texture evolution and deformation behavior of Ti6Al4V subjected to accumulative angular drawing, Materials Science & Engineering A 764, 2019, 138-168.
  74. Madej L., Malinowski L., Perzynski K., Mojzeszko M., Wang J., Cios G.,
    Czarnecki D., Bala P., Considering influence of microstructure morphology of epoxy/glass composite on its behavior under deformation conditions – digital material representation case study, Archives of Civil and Mechanical Engineering, 19, 2019, 1-12.
  75. Sitko M., Chao Q., Wang J., Perzynski K., Muszka K., Madej L., A parallel version of the cellular automata static recrystallization model dedicated for high performance computing platforms – development and verification, Computational Materials Science 172, 2020, 109283.
  76. Szyndler J., Grosman F., Tkocz M., Delannay L., Wang J., Muszka K., Madej L., Through scale material flow investigation in novel incremental bulk forming process, Journal of Materials Processing Technology, (https://doi.org/10.1016/j.jmatprotec.2019.116487).
  77. Ghiotti A., Bruschi S., Bertolini R., Perzynski K., Madej L., Forming of bioabsorbable clips using magnesium alloy strips with enhanced characteristics, Annals Manufacturing Technology, 69, 2020,
  78. Perzyński K., Zych D., Sitko M., Madej L., Numerical investigation of the influence of pulsed laser deposited TiN thin film morphology on deformation inhomogeneities, Archives of Metallurgy and Materials, 2020.
  79. Mojżeszko M., Perzyński K., Sionkowski M., Paul H., Madej L., Numerical investigation of an explosive welding of Ti/Cu plates based on a meshfree method, Archives of Metallurgy and Materials, 2020.
  80. Paul H., Chulist R., Bobrowski P., Perzyński K., Madej L., Mania I., Miszczyk M., Cios G., Microstructure and properties of the interfacial region in explosively welded and post-annealed titanium-copper sheets, Material Characterization, 167, 2020, 110520.
  81. Muszka K., Zych D., Lisiecka-Graca P., Madej L., Majta J., Experimental and molecular dynamic study of grain refinement and dislocation substructure evolution in HSLA and IF steels after severe plastic deformation, Metal, 10, 2020, 1-12.
  82. Roskosz S., Chrapoński J., Madej L., Application of systematic scanning and variance analysis method to evaluation of pores arrangement in sintered steel, Measurements, 168, 2021, 15, 108325.
  83. Muszka K., Sitko M., Lisiecka-Graca P., Simm T, Palmiere E., Schmidtchen M., Korpala G., Wang J., Madej L., Experimental and numerical study of the effects of the reversal hot rolling conditions on the recrystallization behavior of austenite model alloys, Metals, 11, 2021, 1-17.
  84. Bogun K., Sitko M., Mojzeszko M., Madej L., Cellular Automata-based computational library for development of digital material representation models of heterogenous microstructures, Archives of Civil and Mechanical Engineering, 21:61, 2021, 1-15.
  85. Madej L., Chang Y., Szeliga D., Bleck W., Pietrzyk M., Criterion for microcrack resistance of multi-phase steels based on property gradient maps, CIRP Annals Manufacturing Technology, 70, 2021, 243-246.
  86. Perzynski K., Cios G., Szwachta G., Bala P., Madej L., Numerical study on the dependency of microstructure morphologies of pulsed laser deposited TiN thin films and the strain heterogeneities during mechanical testing, Materials, 14, 2021, 1-14.
  87. Sitko M., Banas K., Madej L., Scaling scientific cellular automata microstructure evolution model of static recrystallization toward practical industrial calculations, Materials, 14, 2021, 1-13.
  88. Sitko M., Madej L., The role of the cellular automata cell size and time step length in the microstructure evolution model – the static recrystallization case study, Journal of Computational Science, 54, 2021, 1-14, 101437.
  89. Chang Y., Haase C., Szeliga D., Madej L., Hangen U., Pietrzyk M., Bleck W., Compositional heterogeneity in multiphase steels: Characterization and influence on local properties, Materials Science and Engineering: A, 827, 2021, 142078.
  90. Madej L., Legwand A., Setty M., mojzeszko M., Perzynski K., Roskosz S., Chraponski J., Evaluation of capabilities of the nanoindentation test in the determination of flow stress characteristics of the matrix material in porous sinters, Archives of Civil and Mechanical Engineering, 2022, 22:21.
  91. Lin F., Sitko M., Madej L., Delannay L., Non-uniform grain boundary migration during static recrystallization: A cellular automaton study, Metallurgical and Materials Transactions A, 53, 2022, 1630–1644.
  92. Szeliga D., Chang Y., Madej L., Bzowski K., Perzyński K., Haase C., Bleck W., Pietrzyk M., Correlating the microstructural heterogeneity with local formability of cold-rolled dual-phase and complex-phase steels through hardness gradients, Steel Research International, 93, 2022, 1-13.
  93. Ghiotti A., Bruschi S., Simonetto E., Magro T., Madej L., Severe plastic deformation by Constrained Backward Flowforming, CIRP Annals – Manufacturing Technology, 71, 2022, 253-256.
  94. Muszka K., Kwiecien M., Perzynski K., Majta J., Madej L., Metal forming driven surface engineering of thin profile wires for high precision industrial filtration screens, CIRP Annals – Manufacturing Technology, 71, 2022, 265-268.
  95. Yanagimoto Y., Banabic D., Banu M., Madej L., Simulation of metal forming – Visualization of invisible phenomena in the digital era, CIRP Annals – Manufacturing Technology, 71, 2022, 599-622
  96. Perzynski K., Pyzynski K., Swierczynski S., Pidvysots’kyy V., Klis J., Madej L., Influence of the roll leveler setup parameters on the quality of high‑strength steel leveling operation, The International Journal of Advanced Manufacturing Technology, 120, 2022, 1203–1217.
  97. Motyl M., Madej L., Supervised pearlitic–ferritic steel microstructure segmentation by U‑Net convolutional neural network, Archives of Civil and Mechanical Engineering, 22, 2022, 1–13.
  98. Madej L., Sitko M., Computationally efficient cellular automata-based full-field models of static recrystallization – a perspective review, Steel Research International, 2023.
  99. Sitko M., Czarnecki M., Pawlikowski K., Madej L., Evaluation of the effectiveness of neighbors’ selection algorithms in the random cellular automata model of unconstrained grain growth, Materials And Manufacturing Processes, 38:15, 2023, 1972-1982.
  100. Muszka K., Bloniarz R., Cichocki K., Majta J., Madej L., 3D scanning and 3D printing to develop internally helically ribbed tubes, CIRP Annals, 72 2023, 233-236.
  101. Perzynski K., Cios G., Madej L., Prediction of fracture evolution in the TiN/Al thin films based on a full-field modelling approach, International Journal of Solids and Structures, 283, 2023, 112473.
  102. Kurgan A., Madej L., Role of crystallographic orientation in material behaviour under nanoindentation: Molecular Dynamics study, Materials Science-Poland, 41(2), 2023,  1-9.
  103. Zielinska M., Yang H., Madej L., Malinowski L., Influence of electromagnetic field on stirring energy in selected metallurgical equipment, Steel Research International, 2300534, 2023.
  104. Baran K., Sitko M., Madej L., Analysis of the influence of a pseudo-random number generator type on the kinetics of the cellular automata recrystallization model, Journal of Computational Science 75, 2024, 102193.
  105. Mojzeszko M., Madej L., Capabilities and limitations of the simplified smoothed particle hydrodynamics explosive welding model, Archives of Civil and Mechanical Engineering, 2024.
  106. Zielinska M., Yang H., Madej L., Malinowski L., Development and validation of computational fluid dynamics model of ladle furnace with electromagnetic stirring system, Materials, 17, 2024, 960.