Analytical solution of the diffusion model and the inverse problem

PMiKNoM seminars - class 9

Introduction

The methods for establishing the diffusion coefficient in concretes:

Fick's second Law - analytical solution

Assumptions
Analytical solution
` c_k^\text{model} \equiv c^\text{model} (x_k,t) = c_L (1-erf (\frac{x_k}{2 \sqrt{D \cdot t}} )) `
Comparison of the solutions

The inverse problem - formulation

The goal function is given as:

` Gf(D,c_L) = \sum_{k=1}^r (c_k^{exp} - c_k^\text{model})^2 `
After inserting the analytical solution:
` Gf(D,c_L) = \sum_{k=1}^r ( c_k^{exp} - c_L (1-erf (\frac{x_k}{2 \sqrt{D \cdot t}} )))^2 `

The inverse problem - exercises using MS Excel Solver

Data
$$ \begin{array}{lcccccc} \text{Distance from the left boundary: }& 6mm & 12mm & 18mm & 24mm & 30mm & 36mm \\ \text{Measured concentration: } & 0,58\text{%} & 0,32 \text{%} & 0,23 \text{%} & 0,08 \text{%} & 0,06 \text{%} & 0,04 \text{%} \end{array} $$
Measurement time: `t = 10 months = 26562000s`
Parameters to be optimised
`D \in [10^{-16};10^{-9}] \text{ and } c_L \in [0;2\text{%}] `
Different approaches for parametrs search